Измерение нелинейных искажений сигналов и нелинейных характеристик цепей с применением сверхширокополосных тестовых сигналов

Семенов Эдуард Валерьевич д.т.н., доц. каф. РЗИ

Проблематика

Сверхширокополосные сигналы применяются весьма широко:

- в системах цифровой связи (цифровые сигналы сверхширокополосные сигналы);
- в системах локации (подповерхностной) и т.д.
- Нелинейные преобразования сигналов и нелинейные характеристики цепей важно анализировать по многим причинам:
 - как вредный эффект искажения сигналов;
 - как полезное функциональное свойство усилительных и преобразовательных элементов;
 - как обнаружительный и диагностический признак в рефлектометрических, сенсорных и локационных системах.
- Проявление нелинейных свойств объектов зависит от воздействующих на них сигналов. Поэтому измерять нелинейные искажения сигналов и характеризовать нелинейные цепи следовало бы на сигналах, максимально близких к тем, с которыми объекты реально работают.
- Сложился чрезвычайно устойчивый (но неправильный) стереотип нелинейные искажения проявляются в виде появления новых спектральных составляющих, а поэтому измерять нелинейные искажения надо либо на гармонических сигналах, либо на состоящих из небольшого числа гармонических составляющих.
- Сказанное обусловливает сложность и актуальность задачи создания и развития методов и средств измерения нелинейных искажений сигналов и нелинейных характеристик цепей с применением сверхширокополосных (СШП) тестовых сигналов.

Задачи измерения нелинейных искажений сигналов и нелинейных характеристик цепей

- Существует две задачи в данной сфере, которые чрезвычайно важно четко различать:
 - измерение собственных характеристик нелинейных цепей, более или менее независимых от параметров тестовых сигналов (построение модели цепи);
 - измерение нелинейных искажений сигналов цепями.
- Наличие нелинейной модели цепи само по себе ничего не говорит о нелинейности преобразования ею конкретных сигналов (нелинейность объектов проявляется по-разному при воздействии на них разных сигналов).
- Существуют методы, позволяющие при наличии модели нелинейного объекта рассчитать его отклик на тестовый сигнал.
- Однако и в этом случае не ясно, в какой мере изменение формы сигнала связано с линейными искажениями, а в какой – с нелинейными. Собственно решение задачи по исследованию нелинейных искажений сигналов и призвано ответить на этот вопрос.

Метод исследования нелинейных искажений СШП-сигналов

■ Преобразование сигнала объектом линейно, если

u(t) = h(t) * x(t), (1)

x(t) – тестовый сигнал, u(t) – отклик объекта, h(t) – импульсная характеристика объекта, знак равенства понимается как тождество относительно x(t).

При сплошном спектре СШП-сигнала принципиально возможно установить невыполнение (1) (т.е. нелинейность преобразования) на основании нескольких тестовых воздействий, когда (1) нарушается в смысле отсутствия тождественности относительно *x*(*t*). При этом требуется, по меньшей мере, два различных по форме и/или амплитуде тестовых сигнала.

Метод исследования нелинейных искажений СШП-сигналов

На объект последовательно воздействуют двумя тестовыми сигналами x₁(t) и x₂(t). Один из них является линейным преобразованием другого:

$$X_2(\omega) = K_1(\omega)X_1(\omega), \qquad (2)$$

- $K_1(\omega)$ заданная функция, $X_{1,2}(\omega)$ спектры тестовых сигналов.
- Характеристика нелинейности є(t) преобразования сигналов объектом определяется выражением

 $\varepsilon(t) = u_1(t) - F^{-1}[1/K_1(\omega)] * u_2(t), \quad (3)$

где $u_1(t)$ и $u_2(t)$ – отклики объекта на тестовые сигналы $x_1(t)$ и $x_2(t)$ соответственно, F^{-1} – обратное преобразование Фурье, * – символ свертки.

- Если преобразование сигналов объектом линейно, то $\varepsilon(t) \equiv 0$.
- Если $\varepsilon(t) \neq 0$ хотя бы для некоторых *t*, то преобразование сигналов объектом нелинейно.
- Обратное утверждение неверно. Если $x_1(t) = x_2(t)$, то $\varepsilon(t) = 0$ и при нелинейном преобразовании этих сигналов.
- Чтобы при нелинейном преобразовании сигналов є(t) была отлична от нуля, следует выбирать сигналы x₁(t) и x₂(t) разной формы и/или амплитуды с тем, чтобы они различным образом подвергались изменению при нелинейном преобразовании.

Исследование нелинейности преобразования сигналов при наличии нелинейных искажений тестовых сигналов генератором

- Если зарегистрировать реально воздействующие на объект первый и второй тестовые сигналы и использовать их при определении характеристики нелинейности, то оказываются допустимыми нелинейные искажения тестовых сигналов генератором. При этом возможно применение тестовых сигналов с наперед не заданной формой.
- Преобразование сигналов приемником учтем при помощи нелинейных (в общем случае) операторов измерительного канала S_u и опорного канала S_x.

$$\varepsilon^{*}(t) = S_{u}[u_{1}(t)] - F^{-1} \left[\frac{F\{S_{u}[u_{2}(t)]\}}{F\{S_{x}[x_{2}(t)]\}} \right] * S_{x}[x_{1}(t)].$$

- В результате возможно применение тестовых сигналов с наперед не заданной формой.
- При исследовании нелинейности преобразования сигналов в системах связи возможно применять в качестве x₁(t) и x₂(t) отрывки передаваемых в этих системах реальных сигналов (в том числе с непересекающимися спектрами).
- Тестовые сигналы могут представлять собой реализации случайного процесса.

Исследование нелинейности преобразования сигналов приемником

- При наличии нелинейных искажений сигналов приемником ε^{*}(*t*) отражает совокупную нелинейность преобразования сигналов объектом и приемником.
- Возникает потребность в том, чтобы охарактеризовать и учесть искажения сигналов собственно приемником.
- Если на фазовый корректор осуществить воздействие двумя тестовыми сигналами разной формы и/или амплитуды, зарегистрировать воздействующие сигналы, а также сигналыотклики фазового корректора, и эти четыре зарегистрированных сигнала использовать для определения характеристики нелинейности, то она будет отражать нелинейность преобразования сигналов только регистрирующим устройством (приемником).
- Если преобразование сигналов объектом линейно, то предыдущая формула отражает нелинейность преобразования сигналов только приемником:

$$\varepsilon_{\pi}^{*}(t) = S_{u}[h(t)x_{1}(t)] - F^{-1} \left[\frac{F\{S_{u}[h(t)x_{2}(t)]\}}{F\{S_{x}[x_{2}(t)]\}} \right] * S_{x}[x_{1}(t)].$$
(4)

- Нередко возникает потребность в исследовании нелинейности преобразования сигналов одноканальным приемником (или отдельно взятым каналом многоканального приемника).
 Это возможно, если построить измерительную установку как рефлектометр по отношению к линейному объекту (рисунок 10).
- При этом (4) приобретает вид:

$$\varepsilon_{\pi}^{*}(t) = S_{\pi}[h(t)x_{1}(t)] - F^{-1}\left[\frac{F\{S_{\pi}[h(t)x_{2}(t)]\}}{F\{S_{\pi}[x_{2}(t)]\}}\right] * S_{\pi}[x_{1}(t)]$$

Рисунок 1 – Тракт для измерения собственной нелинейности одно- или двухканальных приемников

Исследование нелинейности преобразования сигналов объектом с учетом нелинейных искажений сигналов приемником

Заменим исследуемый объект заведомо линейным объектом. Выберем импульсную характеристику *h*(*t*) этого линейного объекта так, чтобы он изменял форму и амплитуду одного из тестовых сигналов так же, как изменяет их исследуемый объект:

 $h(t) * x_1(t) = u_1(t)$ или $h(t) * x_2(t) = u_2(t),$ (5)

где *u*_{1,2} – отклики исследуемого объекта.

- Если $\varepsilon^*(t)$, полученная для исследуемого объекта, отличается от $\varepsilon^*_{n}(t)$, полученной при удовлетворяющей (5) h(t), то преобразование сигналов исследуемым объектом нелинейно.
- На практике затруднительно подобрать линейный объект с импульсной характеристикой *h*(*t*), в точности удовлетворяющей (5).

■ Поэтому допустимо отыскать $\varepsilon_{\Pi}^{*}(t)$ для h(t), удовлетворяющей условию $h(t) * x_{1}(t) \approx u_{1}(t)$ или $h(t) * x_{2}(t) \approx u_{2}(t)$, если при отклонениях формы или амплитуды $h(t) * x_{1}(t)$ от $u_{1}(t)$ (или $h(t) * x_{2}(t)$ от $u_{2}(t)$) характеристика $\varepsilon_{\Pi}^{*}(t)$ изменяется незначительно (т.е. эти изменения не влияют на решение о сходстве или различии $\varepsilon^{*}(t)$ и $\varepsilon_{\Pi}^{*}(t)$).

Тестирование металлических объектов

	Нормированная амплитуда, %			
Предмет исследования	зарегистри- рованного отклика <i>S_u</i> [<i>u</i> ₁ (<i>t</i>)]	характеристики нелинейности ε [*] (t)	Суммы комбинационных составляющих	
Объект из низкоуглеродистой стали	100	15.8	2.2	
Тестирование нелинейности приемника сигналом, близким к отклику объекта из низкоуглеродистой стали	101	0.09	0.04	
Объект из алюминия	8.7	0.48	0.25	
Тестирование нелинейности приемника сигналов, близким к отклику объекта из алюминия	9.4	0.46	0.23	

Двухчастотный тестовый сигнал: частоты 16 и 18 кГц; амплитуда равна амплитуде $x_1(t)$; длительность двухчастотного сигнала на уровне 0.1 его амплитуды 3.9 мс.

Измерение нелинейности преобразования сигналов приемниками

■ Объект исследования: входные цепи и АЦП осциллографа Tektronix TDS1012B.

Рисунок 5 – Зарегистрированные исследуемым приемником сигналы $(S_n[x_2(t)] (кривая 1), S_n[x_1(t)] (кривая 2), S_n[u_2(t)] (кривая 3), S_n[u_1(t)] (кривая 4)) и характеристика нелинейности <math>\varepsilon^*(t)$ (кривая 5)

- В качестве фазового корректора A1 использована X-секция.
- $x_2(t)$ видеоимпульс длительностью 7.8 нс.
- *x*₁(*t*) выбирается с таким расчетом, чтобы после преобразования в фазовом корректоре он принял вид, близкий к видеоимпульсному.

Рисунок 6 – Спектр отклика исследуемого приемника на сигнал генератора Tektronix AFG3101, включенного в режим генерации гармонического сигнала

Тестирование линий передачи, содержащих линейные и нелинейные неоднородности

Рисунок 7 – Исследуемая линия передачи с линейной и нелинейной неоднородностями

Рисунок 8 – Зарегистрированные приемником тестовые сигналы $(S_n[x_1(t)] (кривая 1), S_n[x_2(t)] (кривая 2))$, зарегистрированный отклик исследуемой линии передачи на сигнал $x_1(t)$ (сигнал $S_n[u_1(t)]$, кривая 3) и характеристика нелинейности $\varepsilon^*(t)$ (кривая 4)

Сигнал x₂(t) получен преобразованием сигнала x₁(t) при помощи фазового корректора с коэффициентом пропускания

$$S_{12}^{N} = S_{21}^{N} = \frac{(j\omega)^{2} - \frac{\omega_{0}}{m}j\omega + \omega_{0}^{2}}{(j\omega)^{2} + \frac{\omega_{0}}{m}j\omega + \omega_{0}^{2}};$$

$$m = 1/2; \omega_{0}/2\pi = 14.6 \text{ MFu}.$$

Характеристика нелинейности имеет экстремум только в окрестности отклика от нелинейной неоднородности. Экстремум локализован во времени, что обеспечивает возможность определения расстояния до нелинейной неоднородности. 11

Нелинейная рефлектометрия некачественных контактов

- Измерение сопротивления контактов, вибрационные и климатические испытания не обеспечивают выявление всех разновидностей дефектов:
 - контакт с недостаточной поверхностью стягивания конструктивно обладает достаточной жесткостью, то он способен выдержать климатические и вибрационные испытания;
 - если дефект локален, то даже весьма значительное уменьшение площади, через которую протекает электрический ток, не приводит к существенному увеличению сопротивления контролируемой цепи;
 - в рамках обычных методов контроля сопротивления при наличии большого числа отводов в контролируемой цепи необходима ручная или автоматическая коммутация измерителя сопротивления;
 - в рефлектограмме, получаемой обычным рефлектометром, наблюдаются отметки от любых неоднородностей в линии передачи. В области, где расположен электрический контакт, нередко имеет место скачек волнового сопротивления линии передачи. Отражение от этого скачка, как правило, значительно превышает отражение, вызванное повышенным сопротивлением электропроводящих частей линии передачи.

Тестирование некачественных контактов вида металл-окисел-металл

Рисунок 9 – Отклик (*a*) и характеристика нелинейности (б) контакта металл-окисел-металл, размещенного в качестве короткого замыкания в конце линии передачи из кабеля ТРП-0.4 длиной 230 м

Рисунок 10 – Отклик (*a*) и характеристика нелинейности (б) диода Шотки ВАТ46, подключенного параллельно линии из свернутого в бухту кабеля ТРП-0.4 на расстоянии 230 м от точки подключения прибора Р4-И-01 13

Термонелинейная рефлектометрия некачественных контактов

Рисунок 11 – Структурная схема экспериментальной установки

Рисунок 12 – Принципиальная схема измерительного преобразователя

Активное участие в развитии этого направления принимает Артищев С.А.

Термонелинейная рефлектометрия некачественных контактов с недостаточной поверхностью стягивания

Рисунок 14 – Нелинейная рефлектограмма контакта с малой поверхностью стягивания

Экстракция параметров нелинейной модели электрического контакта по результатам тестирования методом нелинейной рефлектометрии

- Основной диагностический параметр электрического контакта площадь поверхности стягивания.
- Полученная нами нелинейная модель электрического контакта позволяет по результатам измерений методом нелинейной рефлектометрии определять площадь поверхности стягивания контакта либо ее изменение:

$$\Delta R_{\rm K} = \frac{\rho}{2an} - \frac{\rho}{2an} \frac{1}{1 - \frac{\rho \alpha_R}{48(an)^2 \lambda} I^2}$$

где *ап* – экстрагируемый параметр:

- а радиус контактной точки;
- *n* число контактных точек.

Реализация метода исследования нелинейности преобразования сверхширокополосных сигналов в векторном импульсном измерителе характеристик цепей Р4-И-01

Рисунок 15 – Векторный импульсный измеритель характеристик цепей Р4-И-01 (справа) и компьютер (слева) с установленным программным обеспечением ИмпульсМ, обеспечивающим работу измерителя

Рисунок 16 – Настройка параметров тестового сигнала

В разработке прибора участвовали: Лощилов А.Г., Бибиков Т.Х., Ильин А.А., Мисюнас А.О.

Виртуальный нелинейный импульсный измеритель характеристик цепей

- Создает возможность исследовать нелинейность преобразования сигналов устройствами уже на этапе их проектирования.
- Позволяет диагностировать качество нелинейных моделей элементов по точности представления этими моделями нелинейных искажений видеоимпульсных и других СШПсигналов.

Рисунок 17 – Виртуальный нелинейный импульсный измеритель для измерений на проход (TDT_N) и рефлектометрических измерений (TDR_N

Рисунок 19 – Результаты тестирования цепи, представленной на рисунке 18, виртуальным нелинейным измерителем

Исследование нелинейных характеристик цепей с применением сверхширокополосных тестовых сигналов

- Теоретическая основа для характеризации цепей на достаточно произвольных (в том числе СШП) сигналах известна давно (ряды Вольтерра).
- Однако трудности практической реализации такой характеризации ограничивают ее случаем сигналов, содержащих максимум две-три спектральных составляющих, и режимом слабой нелинейности.
- Другой эффективный подход к характеризации цепей подразумевает использование их эквивалентных схем (SPICE-модели).
- Такого вида модели используются, например, для характеризации полупроводниковых элементов, а также в рефлектометрии для описания и диагностики различных неоднородностей и дефектов линий передачи.
- При этом заранее ограничивается класс характеризуемых цепей, но получается очень удобная и эффективная модель, «работающая» и для СШП-сигналов, и для режима существенной нелинейности, а также допускающая физическую интерпретацию получаемых характеристик и параметров.

Зависимость параметров эквивалентной схемы от вида тестовых сигналов

- Замещение объекта эквивалентной схемой лишь приближенно аппроксимирует нелинейный оператор реального объекта.
- Это проявляется в том, что параметры и характеристики элементов выбранной эквивалентной схемы оказываются зависящими от вида сигналов, на которых производилась их экстракция. Так возникают, например, понятия «низкочастотной» и «высокочастотной» вольт-фарадной характеристик.
- Адекватность и точность моделей в виде эквивалентных схем зависит от того, как соотносятся сигналы, на которых производилась экстракция параметров и характеристик элементов эквивалентной схемы, с сигналами, на которых элемент будет в дальнейшем работать.
- Для улучшения точности модели определять параметры ее элементов следовало бы с использованием сигналов, близких к рабочим для объекта (например, на короткоимпульсных сигналах). В таком случае, однако, сама возможность измерения требуемых характеристик и параметров оказывается под вопросом (например, возможность измерения с приемлемой точностью нелинейной (зависящей от напряжения) емкости в условиях продолжающихся переходных процессов в объекте).

Метод характеризации цепей в виде соединения нелинейных сопротивлений (источников тока) и нелинейных емкостей

Известная модель охватывает диоды на основе *p*-*n*-перехода, диоды Шотки, ДНЗ-диоды, переходы биполярных транзисторов, различные по конструкции затворы полевых транзисторов.

$$i(u) = i_{\rm IV}(u) + C(u)\frac{du}{dt}.$$
(1)

Программно-аппаратный измерительный комплекс для сверхкороткоимпульсных измерений характеристик цепей

Функциональные возможности сверхкороткоимпульсных измерений ВАХ и ВФХ (программное обеспечение UWB-CAP – UWB Characterization and Analysis Program)

Сравнение методических погрешностей классического и сверкороткоимпульсного метода измерения ВАХ и ВФХ

Классические (сплошные кривые) и короткоимпульсные (квадраты) ВАХ и ВФХ получаются разными. Какие ближе к действительным в импульсном режиме?

Выполним экстракцию SPICE-параметров по измеренным ВАХ и ВФХ и построим модель тока объекта (сплошная кривая) в сравнении с измеренным током через барьер Шотки (квадраты).

IS = 722 hA, N = 1.056, VJ = 0.275 B, CJ0 = 208 $\pi\Phi$, M = 0.4354, TT = 0 hc

IS = 308 hA, N = 1.008, VJ = 0.275 B, CJ0 = 203 $\pi\Phi$, M = 0.1653, TT = 1.1 hc

Наблюдение и аппроксимация аномалий в ВАХ и ВФХ при помощи сверхкороткоимпульсных измерений

Коррекция параметров SPICE-моделей транзисторов с использованием сверхкороткоимпульсного измерителя вольт-амперных и вольт-фарадных характеристик

- Предыдущие исследования показывают, что от формы воздействующего на *p-n*-переход импульса зависит главным образом диффузионная емкость перехода. Поэтому логично предположить, что для коррекции параметров модели биполярного транзистора достаточно измерить сверхкороткоимпульсные ВАХ и ВФХ открытого в рабочем режиме перехода (перехода база-эмиттер).
- При этом экстракцию соответствующих параметров проще осуществить при нулевом напряжении база-коллектор.
- В данном случае управляемые напряжением источники тока от базы к эмиттеру *i*_{БЭ}(*u*_{БЭ}) и от коллектора к эмиттеру *i*_{KЭ}(*u*_{БЭ}, *u*_{БК}) в известной модели Гуммеля-Пуна оказываются включенными параллельно. Так как *i*_{KЭ} >> *i*_{БЭ}, то в таком включении измеряется фактически *i*_{KЭ}.

Рисунок 20 – Используемая эквивалентная схема транзистора

Исходные и скорректированные ВАХ и ВФХ транзистора

Рисунок 21 – Входные ВАХ (а) и ВФХ (б) транзистора 2N6488G: рассчитанные по представленным производителем параметрам; сверхкороткоимпульсные (2 – измеренные, кривые 3 – аппроксимация)

Рисунок 22 – Импульсы напряжения на эмиттере (а) и коллекторе (б транзистора 2N6488G: моделирование по представленным производителем параметрам (кривые *1*); моделирование по параметрам, экстрагированным из сверхкороткоимпульсных ВАХ и ВФХ (кривые *2*); измеренные (кривые *3*).

Параметры	IS, нА	NF	СЈЕ, пФ	MJE	TF, нс
Параметры производителя	0.0843	0.85	602	0.405	0.4
Сверхкороткоимпульсные параметры	1770	2.62	457	0.068	-7.9

Заключение

- Развитие сверхширокополосных методов и средств анализа нелинейности создает следующие возможности и преимущества.
- В части исследования нелинейности преобразования сигналов объектами становится возможным создание:
 - рефлектометров, позволяющих определить нелинейность неоднородности с выводами о качестве контакта в данной точке и наличии в ней полупроводниковых элементов;
 - подповерхностных радиолокаторов, в которых дополнительно отображается характеристика нелинейности преобразования сигналов объектами;
 - металлоискателей с возможностью селекции нелинейных объектов.
- В части измерения характеристик цепей реализуются следующие преимущества:
 - характеристики цепей более адекватны при импульсных воздействиях на элементы, так как, например, емкость МОП-структур и *p-n*-переходов зависит от формы сигнала;
 - появляется возможность уточнить параметры ВАХ и ВФХ в областях, описывающих устойчивость полупроводниковых элементов к импульсным воздействиям большой амплитуды. Возможно исследование областей, ранее недоступных для измерения;
 - импульсный характер тестового сигнала позволяет проводить раздельное измерение ВАХ и ВФХ нескольких объектов, распределенных вдоль измерительного тракта;
 - малая длительность сигнала позволяет стробированием подавлять паразитные отражения в системах измерения СВЧ-параметров элементов, например, на подложке;
 - требуется весьма малое время для получения ВАХ и ВФХ в целом. Это делает предпочтительным рассмотренный метод для осуществления допускового контроля элементов.